THE DIFFERENTIAL EFFECTS OF MILD TBI ON NEUROCOGNITIVE FUNCTIONING: WHY NO TWO "MILD" BRAIN INJURIES ARE THE SAME

> Donald T. Stuss, Ph.D. Rotman Research Institute at Baycrest Sunnybrook Health Sciences Centre University of Toronto

UHN TRI 2016 Traumatic Brain Injury Conference

CONFLICT OF INTERESTS

MY ONLY FINANCIAL RELATIONSHIP WITH A COMPANY ARE ROYALITES FOR SCIENTIFIC BOOKS: OXFORD UNIVERSITY & CAMBRIDGE UNIVERSITY PRESSES.

THE CLINICAL CHALLENGE

- How to treat cognitive/behavioural dysfunction after TBI in the most effective way possible
- You can't rehabilitate what you don't know
- Ergo, the <u>first step</u> in the treatment and management of traumatic brain injury is <u>knowledge</u> and correct diagnosis and description
- TBI IS NOT A SIMPLE DISORDER

MY CONCLUSIONS IN ADVANCE

- TBI research indicates the need for improved phenotyping (sub-grouping) of patients
- Rationale: specific treatments may work only in certain groups of patients. That is, there is variability among individuals - group variability
- The objective of understanding group variability is to develop stratified subgroups based on rational principles. Phenotyping can be <u>anatomical</u>, <u>behavioural</u>, genetic...

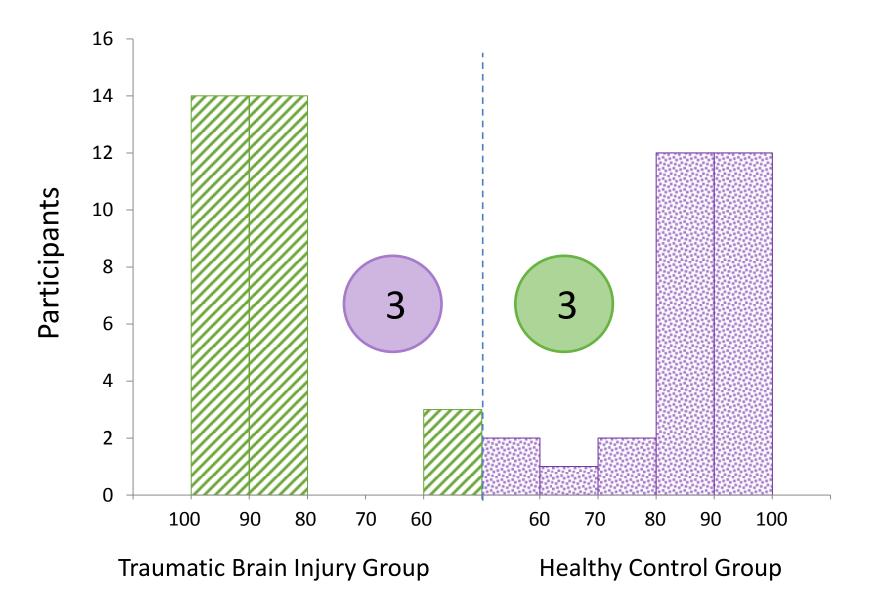
WHY IS THIS IMPORTANT?

 Perhaps too many failures in rehabilitation and treatment, certainly in clinical "trials", derived from not accepting that there are sub-groups within what seemed to be a single disorder

EFFECTIVE REHABILITATION

- RIGHT PERSON directed to a well-characterized subgroup in which the intervention is effective: IMPLICATION – solve group heterogeneity
- RIGHT TREATMENT theoretically driven, validated and tested approach, continually updated and refined as knowledge changes: *IMPLICATION* – <u>excellent science</u>
- RIGHT TIME given at the right time:
 IMPLICATION longitudinal studies
- Ultimately, this is "personalized medicine"

OUTLINE – TWO SECTIONS


 What you can learn by understanding and harnessing group variability – examples from TBI and frontal lobe research

• What is the value of defining sub-groups of individuals with TBI?

TBI EXAMPLE # 1

- TBI patients had "good recovery", and were comparable to matched control individuals on standard measures such as WMS, IQ.
- Continued to have vague complaints
- Discriminant Functional Analysis noted that two key measures differentiated the groups at a high significance level
- BUT classification into appropriate group was not 100%

Classification By Performance in TBI vs Healthy Control Group

WHY?

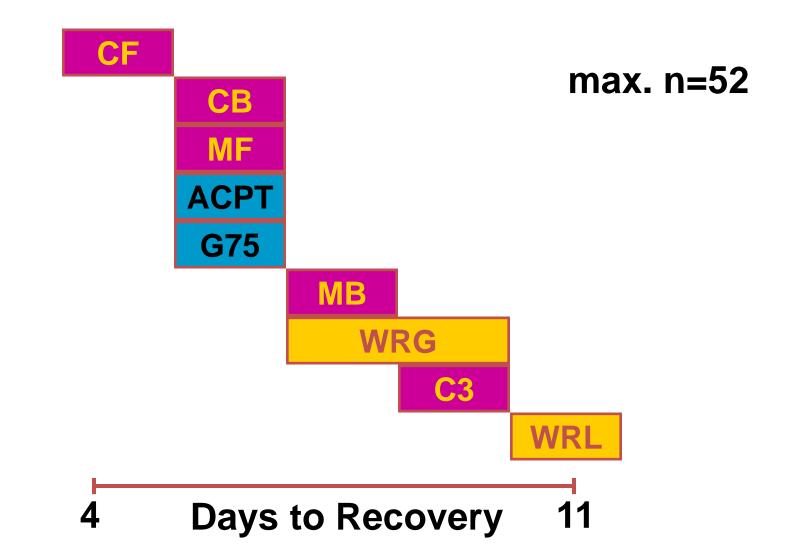
- KEY MESSAGE There is variability of recovery within the "defined" group – did I not define sufficiently well?
 - Dissociating causes of variability is an important factor
 - in deciding on treatment, care, rehab
- SEARCH FOR REASONS
 - not litigation
 - not TBI severity
 - and I was not smart enough to have other measures
- Ask WHY

۲

• THE GOAL - PRECISION REHABILITATION/TREATMENT

TBI EXAMPLE # 2-A

- Prospective study of the acute recovery period after TBI
 - Daily measures of the recovery of memory and attention

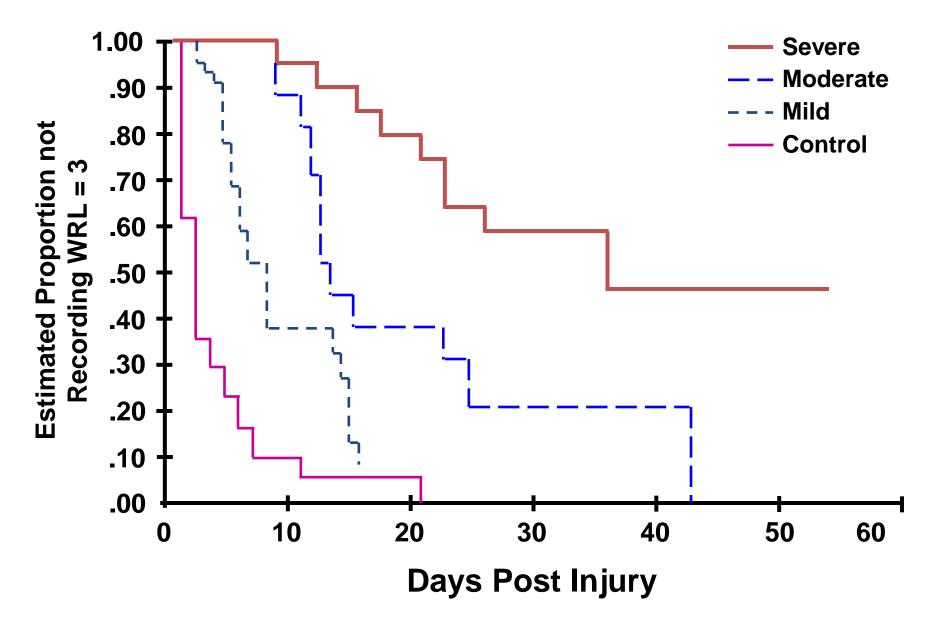

EXPERIMENTAL DESIGN – PATIENTS

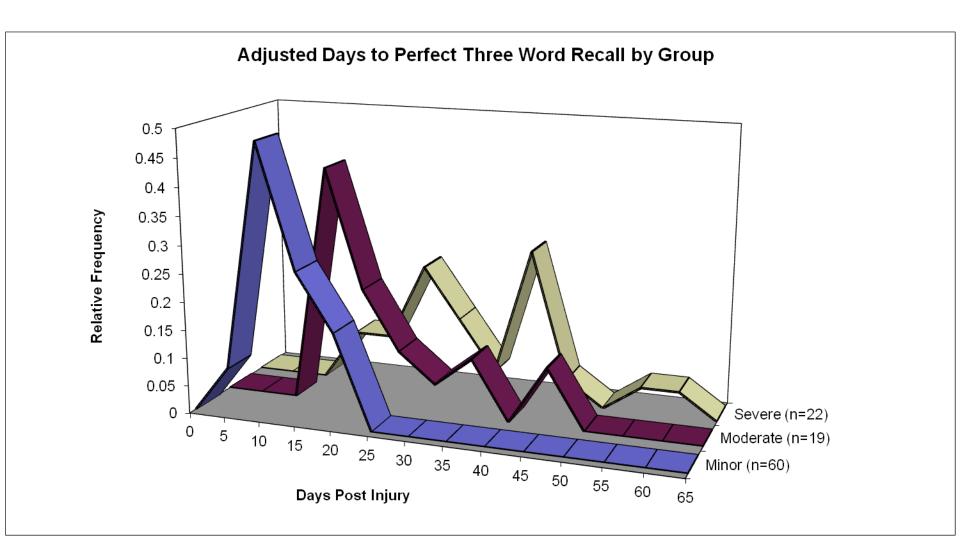
- Hospitalization required >100 participants
- Mild, Moderate, Severe defined by GCS at 6 hours
- Prospective:
 - patients assessed asap after hospitalization
 - tested <u>daily</u> at bedside with simple tests

EXPERIMENTAL DESIGN – TESTS

- Tests: <u>memory and attention</u>, <u>varying in task</u> <u>demands</u>, appropriately randomized
- <u>Attention\working memory</u>:
 - Count forwards and backwards by 1 and by 3
 - Months forwards and backwards
 - Auditory Continuous Performance Test
- <u>Memory</u>
 - Galveston Orientation and Amnesia Test
 - Three word/figures encoding and 24 hour recall/recognition

STAGES of RECOVERY MILD

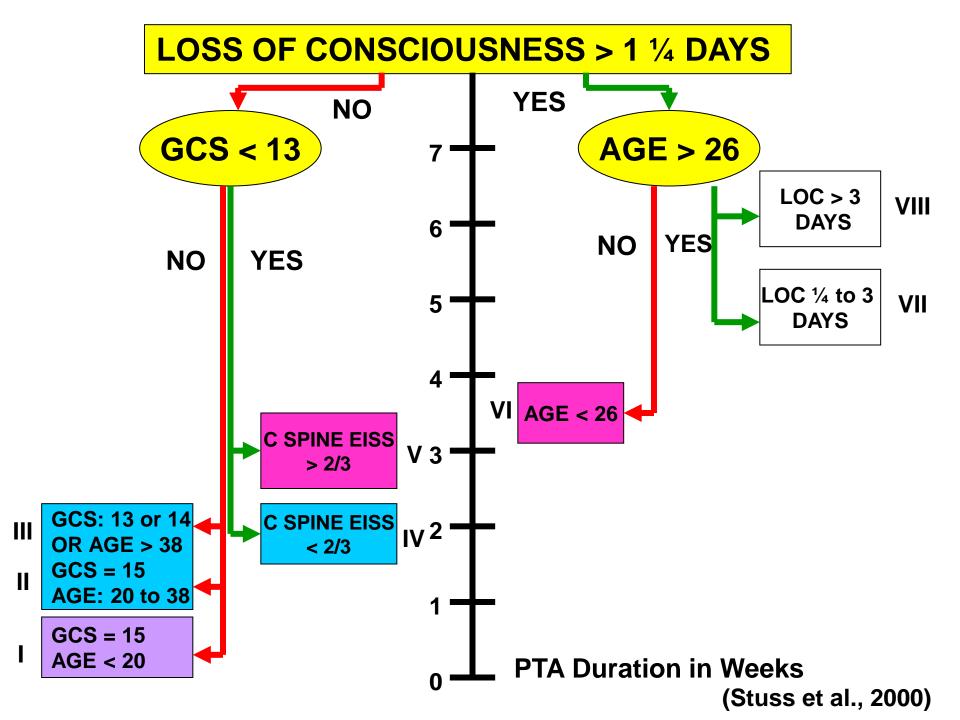



TBI EXAMPLE – #2-B

Prospective study of the acute recovery period after
 <u>TBI</u>

- Prediction of Recovery from Post-Traumatic Amnesia

THREE WORD RECALL

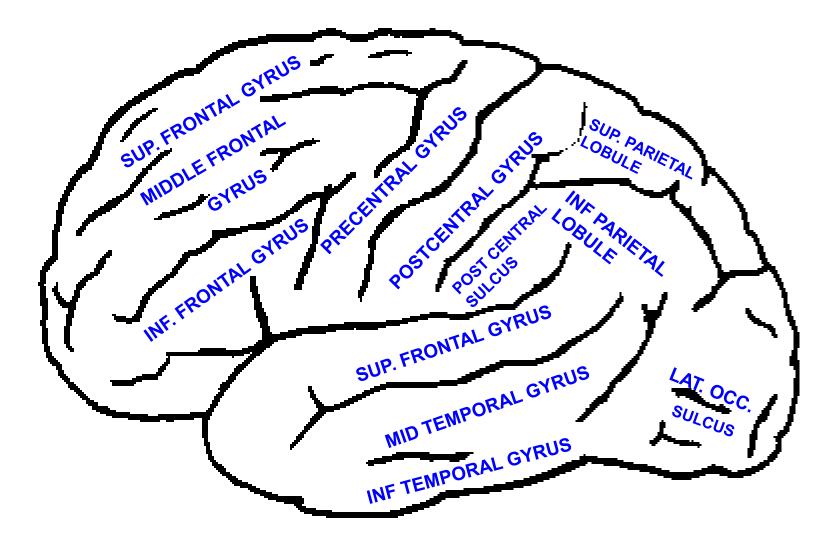


VARIATION IN OUTCOME - WHY?

 Use a statistical method that analyzes different factors that might impact outcome

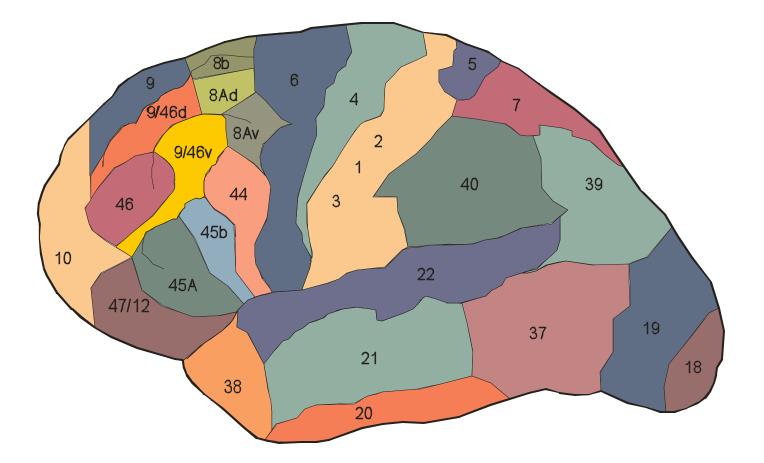
CLINICAL IMPORTANCE

- More accurate prediction of recovery of continuous memory to benefit patient acute care management, including planning of discharge timing
- What types of factors would be important predictors?
 - severity of injury (e.g., GCS, LOC duration)
 - capacity what inherent resources to achieve recovery, measured by premorbid IQ (education) and age)
 - head and neck injuries compared with other soft tissue damage



CONCLUSIONS AGAIN

- TBI research indicates the need for improved phenotyping (sub-grouping) of patients
- Rationale: specific treatments may work only in certain groups of patients. That is, there is variability among individuals - group variability
- The objective of understanding group variability is to develop stratified subgroups based on rational principles. Phenotyping can be <u>anatomical</u>, <u>behavioural</u>, genetic...


FRONTAL LOBE EXAMPLE

 Functions of the frontal lobes were described in general "unitary" terms such as executive, or supervisory

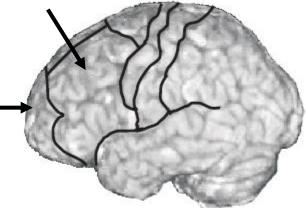
FRONTAL LOBE EXAMPLE

- Unitary?
- But in reality there are multiple functions related to different regions of the frontal lobes

FOUR CATEGORIES OF FRONTAL LOBE FUNCTION

- There are at least four separate categories of frontal lobe functions. Only <u>one</u> can be labeled as <u>executive</u>.
 - Energization (initiation and sustaining of behaviour)
 - Executive
 - Behaviour/Emotional Self-Regulation
 - Metacognition (Theory of Mind)

THE FOUR RELATE TO DIFFERENT FRONTAL REGIONS


- The four categories of frontal functions map onto general anatomical localization based on principles of anatomical development and connectivity
 - Energization: Superior medial frontal, ACG
 - Executive: Lateral prefrontal cortex
 - Behaviour/Emotional Self-Regulation: Ventral medial, orbitofrontal prefrontal cortex
 - Metacognition (Theory of Mind): polar

OVERVIEW OF FL FUNCTIONS

Superior Medial: Energization

LPFC: Executive Control

Frontal Pole: Metacognitive

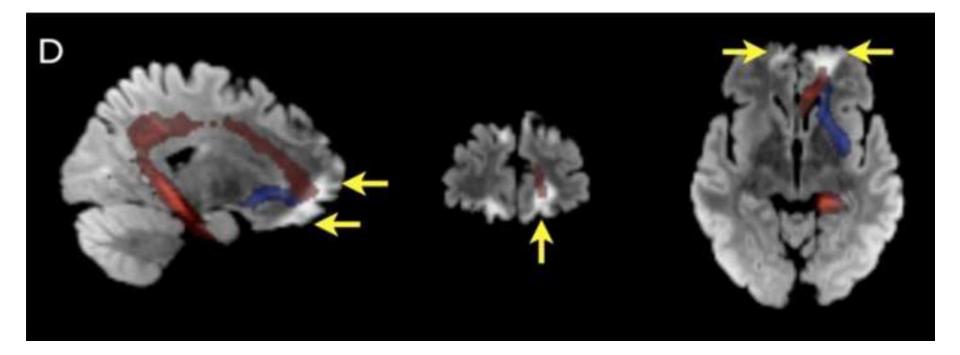
VMPFC: Behavioural and Emotional Self-regulation

OUTLINE – TWO SECTIONS

 What you can learn by understanding and harnessing group variability – examples from TBI and frontal lobe research

- What is the value of defining sub-groups of individuals with TBI?
 - Improved diagnosis
 - Targeted rehabilitation

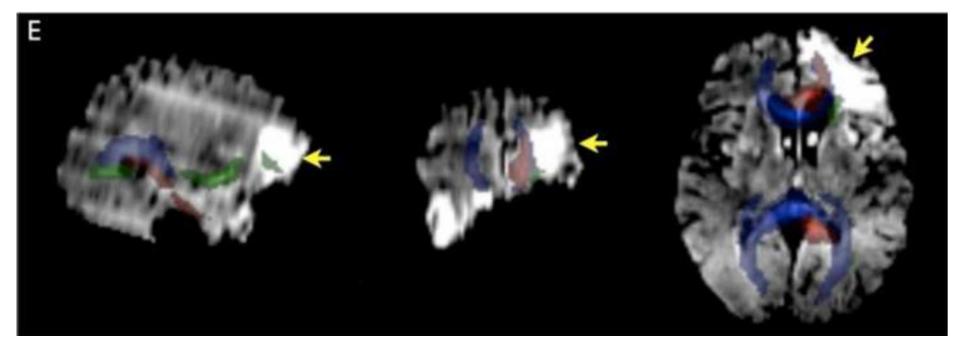
THE OBVIOUS IMPLICATION


- Individuals with traumatic brain injury often are considered to have frontal lobe damage, also called "executive dysfunction"
- BUT the conclusion is too general...
- What does frontal lobe damage mean?
 - Not all individuals with TBI have the same pattern of problems
 - The frontal lobes constitute 25-33% of the entire brain. And we just learned that there are different functions related to different frontal regions

IMPROVED DIAGNOSIS

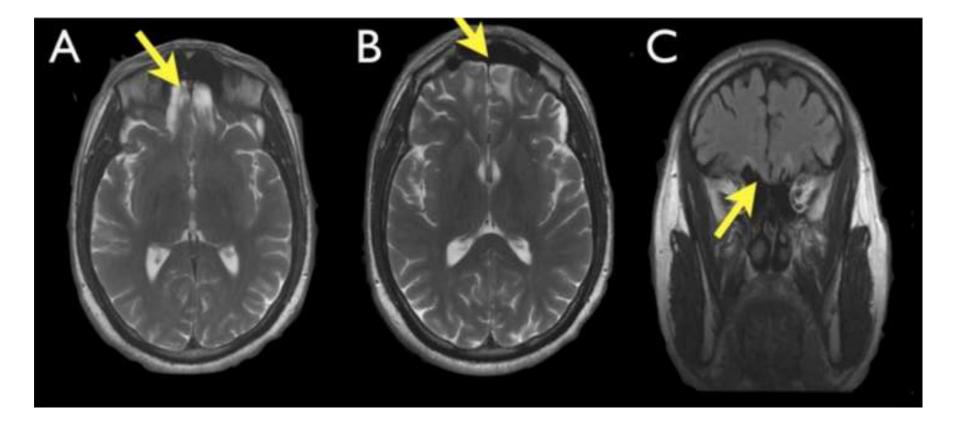
- Three patterns of dysfunction in TBI
 - Abulic
 - Dysexecutive
 - Behavioural
- Each associated with a different FL region

TBI ABULIC SYNDROME


- <u>Primary Localization</u>: medial frontal, including anterior cingulate and superior medial frontal regions
- <u>Behaviours</u>: slowness of processing, lack of activation and initiative, apparent disinterest, and lethargy
- "Pseudodepressed"
- <u>Measures</u>: observation, RT measures

The overlap of the MRI scan with a probabilistic atlas of the white matter pathway suggests an impairment of *left anterior cingular cortex* (red) and left uncinate fasciculus (blue) (D).

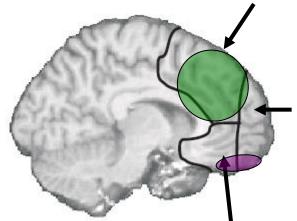
TBI DYSEXECUTIVE SYNDROME


- <u>Primary localization</u>: more laterally involving ventroand dorsolateral FL regions
- <u>Behaviours</u>: Impaired organization, planning, reasoning, set-shifting, and monitoring
- "Pseudo-dementia", when severe
- <u>Measures</u>: many standard FL tests

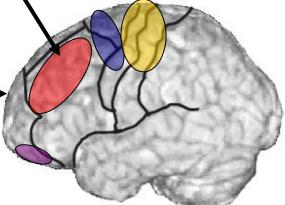
The overlap of the MRI scan with probabilistic atlas of the white matter pathway suggests an impairment of *left anterior cingular cortex* (red), *anterior corpus callosum* (blue) and *inferior fronto-occipital fasciculus- IFOF* (green).

TBI BEHAVIOURAL SYNDROME

- <u>Primary localization</u>: orbitofrontal/ventro medial FL regions
- <u>Behaviours</u>: disinhibition, childishness, aggressive and abusive behaviour, selfishness, impulsivity, etc.
- "Pseudopsychopathic" when severe
- <u>Measures</u>: observations, gambling tasks


A case of minor TBI with a behavioural syndrome. Conventional MRI scans illustrating the identifiable damages (yellow arrows) using T1 (A and B) T2 (C) contrasts.

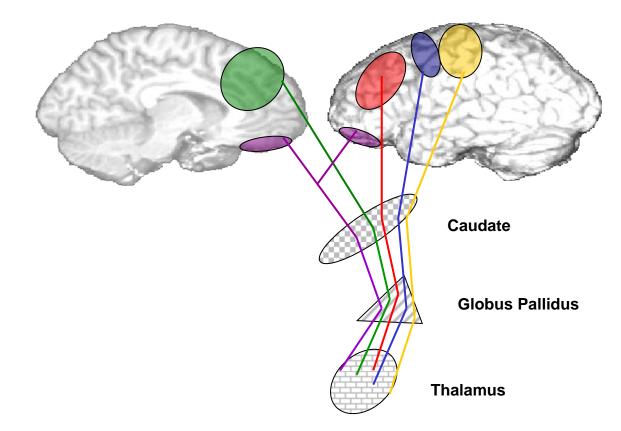
COMMENTS

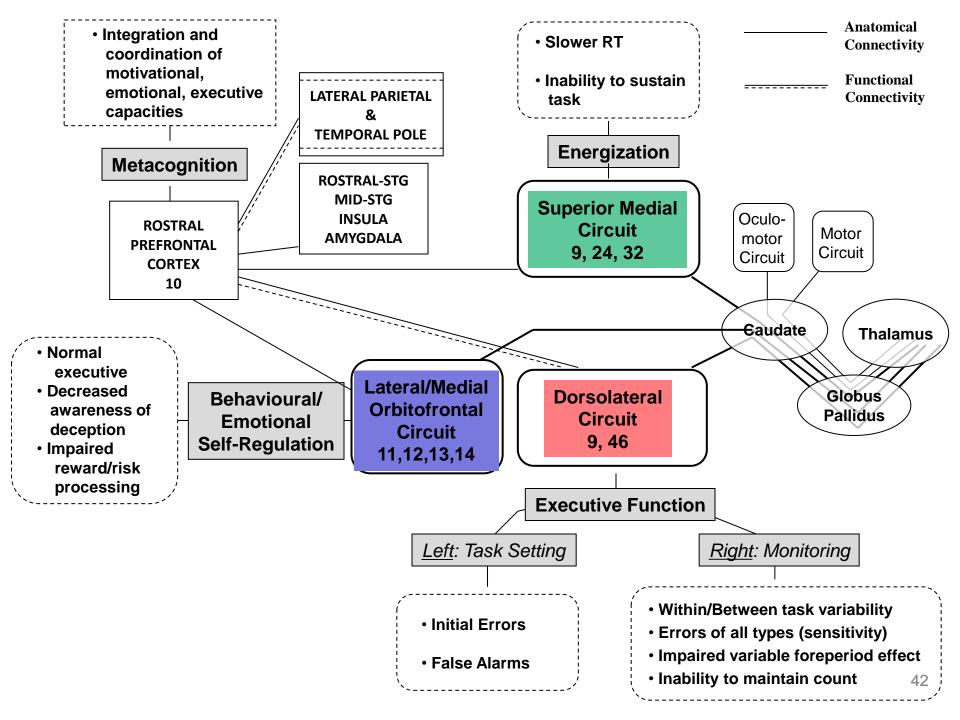

- TBI syndromes clearly map onto FL fractionation framework:
 - Abulic
 - Energization
 - Dysexecutive Executive
 - Behavioural - Behavioural regulation
- What of Polar Area 10, since is frequently damaged in TBI: - only recently has Area 10 dysfunction been reported (see Stuss & Knight, 2012, Oxford University Press)

Superior Medial: Energization

LPFC: Executive Control

Frontal Pole: Metacognitive


VMPFC: Behavioural and Emotional Self-regulation


BUT DOES THIS APPLY TO MILD TBI?

- Mild TBI primarily affects white matter connectivity
- True but different WM tracts get affected in TBI depending on the acceleration/deceleration forces

- these involve to a greater degree the frontal WM pathways, and these derive from the frontal regions which have specific functions

Lateral/Medial Orbitofrontal Circuit	Superior Medial Circuit	Dorsolateral prefrontal-subcortical circuit	Oculomotor Circuit	Motor Circuit
Origin: Lateral & orbital 12	Origin: AC & SM	<mark>Origin:</mark> 9, 46	Origin: 8	Origin: Motor Cortex

CAUTIONARY NOTES

- Presentation of a single syndrome after TBI is uncommon, most patients having mixed presentations
- Value of framework is not just diagnostic differentiation, but in recognition of the potential diversity of clinical problems for understanding and treatment

OUTLINE – TWO SECTIONS

 What you can learn by understanding and harnessing group variability – examples from TBI and frontal lobe research

- What is the value of defining sub-groups of individuals with TBI?
 - Improved diagnosis
 - Targeted rehabilitation

TARGETED NEUROREHABILITATION

- For reviews and elaboration of concepts, see
 - Cicerone et al., 2006
 - Levine, Turner & Stuss, 2008
 - Stuss, 2008
 - Stuss, 2011

REHABILITATION of FUNCTION

Energization

 Externally cuing initiation Pharmacological <u>dopamine agonist</u> 	(Sohlberg et al., 1988) (Powell et al., 1996)
 Task Setting Simplification of complex problems Cueing and feedback 	(Von Cramon et al, 1991) (Fox et al., 1989)
Executive Functions Goal Management Training 	(Levine et al, 2000, 2007)
 Behavioural/Emotional Self-Regulation Prompts/rewards – Monitoring – Control 	(Alderman et al, 1995)
 Meta-cognitive Processes Problem solving and role play Modifying people's predictions, not behaviour 	(Ownsworth et al, 2000) (Rebmann & Hannon et al, 1995) (Youngjohn & Altman, 1989)

FRONTAL FRACTIONATION AND REHABILITATION

Oliver Zangwill Centre, Cambridgeshire Community Services, NHS Trust Used Frontal Lobe fractionation model to direct rehab

- In TBI, found dissociable patterns of outcome based on the model
- Developed targeted rehabilitation based on behavioural patterns

CONCLUSIONS

- Current rehabilitation of individuals with traumatic brain injury may not be targeting the most pertinent problems
- Assessment of such individuals must cover all categories of frontal lobe functions.
- Standard test of many of these frontal lobe dysfunctions do not yet exist.
- The clinical needs suggest the use of experimental measures at this time

CONCLUSIONS

- The value of the framework is that it is a theoretical model grounded in anatomy, brain-behavior relations, and understanding of network connectivity.
- As such it provides an improved ability to differentiate the potential causes underlying dysfunction after TBI, and to target rehabilitative efforts

LET'S GO BACK TO WHY

• ARE THERE OTHER FACTORS TO CONSIDER

BESIDES PATHOLOGY, SEVERITY, AGE?

OTHER POTENTIAL FACTORS AFFECTING OUTCOME

- Pain
- Depression
- Anxiety
- Sleep
- Alcohol use
- Stress
- Vestibular, cerebellar problems
- Psychosocial environment

SUMMARY

- Understanding and differentiating the different types of factors affecting an individual may be an important key to target the type of rehabilitation
- Current rehabilitation of individuals with TBI may not be targeting the most pertinent problems

THANK YOU